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Abstract – Evolution of a homogeneous, anisotropic universe given by a Bianchi type- I cosmological model with modified Chaplygin gas has been considered. It is assumed that the equation of state of this modified model is valid from the radiation era to the  cosmological model. We have applied state-finder parameters in characterizing different phase of the model.

I-INTRODUCTION

An accelerated expansion of the universe and lead to the search for a new type of matter which violated the strong energy condition i.e. p+3p<0 is satisfied. And referred in the observations of the luminosity of type-I supernovae indicate [1,2]. The matter content such a condition to be satisfied at a certain stage of evolution of the universe. The dark energy represented by a scalar field is called quintessence the transition from a universe filled with matter to an exponentially expanding universe does not necessarily require the presence of a scalar field as the only alternative. In particular, one can try another alternative by using an exotic type of fluid—the so called Chaplygin gas which obeys an equation of state such as  where p and p are respectively the pressure and energy density and B is positive constant. The above equation was modified to the form , this model gives the cosmological evolution from initial dustlike matter to an asymptotic cosmological constant and a fluid obeying an equation of state p=. This generalized model has been studied previously [5-7]. 


The state finder diagnostic a observations may be used to discriminate between different dark energy models. The statefinder diagnostic pair is constructed from the scale factor a(t) and its up to the third order derivatives as follows
          and 			(1)

Where H and q (=) are the Hubble parameters are dimensionless and allow us to characterize the properties of dark energy in a model independent manner. The parameter r forms the next step in the hierarchy of geometrical consmological parameters after H and q. 
In work, we consider a more general modified Chaplygin gas obeying an equation of state [9]
	
 with 0 			(2)

This equation of state shows a radiation era (when A =1/3) at one extreme (when  is vanishing small) and a model at the other extreme (when the  is infinitely large). In all stages it’s shows a mixture. Also in between there is one stage when the pressure vanishes and the matter content is equivalent to pure dust. We have the effective Lagrangian.
.				(3)

Where  scalar field and v() potential.
In the paper of Gorini et al. [5,6] it has been shown that the simple flat Friedmann model with Chaplygin gas can equivalently be described in terms of a homogeneous minimally coupled scalar field . In this case FRW equations for Chaplygin gas fit into Barrow’s scheme [10]. Folowing Barrow [11], Kamenshchik et al. [3,4,12] have obtained homogeneous scalar field  and a potential  to describe Chaplygin cosmology. Debnath et al. [13] have studied the role of modified Chaplygin gas in accelerated universe. In the work we have studied the influence of modified Chaplygin gas in Bianchi type-I universe.

II- Modified Chaplygin Gas in Bianchi Type-I Universe
In the Bianchi type-I universe the metric of a homogeneous and anisotropic universe is.
   	              (4)
Where A, B, C are functions of t only.
The Einstein field equations for the metric (4) are written in form
				(5)
 +			               	(6)
 +					(7)
 +					(8)
Where  and  are the energy density and pressure, respectively (choosing 8G=c=1). We define
V=ABC						(9)
Subtracting (6) from (7) [14-16]. We get
.	             (10)
Using (9) in (10), we get
		             (11)
Integrating the above equation, we get
 = constant,  = constant.    (12)
By subtracting (8) from (6) and (7) from (8), we can obtain similarly
,			           (13)
 			           (14)

Where, ,, are integration constants.
In view of (9), we find the following relation between the constant     
s, , ,
, 	 
Finally from (12), (13) and (14), we write in the explicit form. 
		           (15)
		           (16)
		           (17)
Where (i= 1,2,3) and (i=1,2,3) satisfy the relation =1 and 
Now, adding (6),(7),(8) and three times (5), we get
(p-p).	           (18)
From (9) we have
		           (19)
From (18) and (19) we obtain
=			                           (20)
The energy conservation equation is 
			            (21)
From (2) and (21), we have
		          (22)
where c is an arbitrary integration constant.
Now for a small value of the scale factors A(t) and B (t) we have
			                        (23)
which is very large and corresponds to the universe dominated by an equation of state 
 Ap.					          (24)
Then from (20), we have
			          (25)
Which gives 
		                        (26)
where  integration constant
For = 0,(25) gives
V= 		             (27)
From (15), (16), (17) and (26), we get
A(t)= exp [M]		                           (28)
B(t)=			             (29)
C(t)=  exp 	[M]			             (30)
WhereL= ,M=  
From (23) and (26) we get
=				           (31)
and p= 				           (32)
The expansion scalar , the mean anisotropy parameter A, the shear scalar  and the deceleration parameter q. they are defined as [17]
					                 A =			                          (33)
A=   	            (34)					
q=				             (35)
From (32)-(35), we obtain
=		                 	             (36)
A=	             (37)
= 		            (38)
q=				            (39)
where 
From (1) and (26)
r= 		      	            (40)
and
s=2(A+1)			           	            (41)
For a large value of the scale factors  we obtain
 				    (42)
and 
 				     (43)
Then from (20), we have 
				            (44)
Which gives
V= sinh          (45)	
Where  and  are integration constants.
From (15), (16), (17) and (45) we get
A(t)=N exp []			          (46)
B(t)=N exp []			          (47)
C(t)= exp []			          (48)
Where 
N= ,	
 and    are constants.
The physical quantities of observational interest in cosmology are 
=,			        (49)
A= 	         (50)
 			        (51)
			        (52)
where =
From (1) and (45) we get
r= 9 		        (53)
s= 			        (54)
Considering now the subleading terms in (22) at large values of A, B and C. we can get the following expressions for the energy density and pressure.
	    (55)
			                                               (56)
From (19) we have
[1-]			     (57)
On integration, which gives
		      (58)
Where and  is integration constant,
Equations (55) and (56) describe the mixture of a cosmological constant equal to  with matter whose equation of state is given by
			    (59)
Which for a pure Chaplygin gas reduces to 
Now the energy, density and pressure corresponding to a scalar field  The energy  and  are 
+V()==	     (60)
and 
+V() =A-
=A –B 				                                (61)
From (60) and (61) we have
–B			                    (62)

And 
V()=(1-A)+			                  (63)
For A=1 and  then (58) gives
V=	   (64)
Form (15)-(17) and (64), we obtain
 
x exp 	    (65)	
B(t)=
x exp 	   (66)	
C(t)=							
x exp 	   (67)					
where  ,  2  and  .			
The physical quantities are 
			 (68)	
Q=6 	(69)	
From (1) and (64), we get
r = 9 +1		(70)
and 
s=		(71)





III- CONCLUSION
The evolution of homogeneous, anisotropic universe given by a Bianachi type-I cosmological model with modified Chaplygin gas. We have assumed that the equation of state of this modified model is valid from the radiation era to the model. We have used state-finder parameters in characterizing different phase of the model.
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